summaryrefslogtreecommitdiff
path: root/factors/table_test.go
diff options
context:
space:
mode:
authorAdrien Hopkins <adrien.p.hopkins@gmail.com>2025-09-22 15:56:30 -0500
committerAdrien Hopkins <adrien.p.hopkins@gmail.com>2025-09-22 15:56:30 -0500
commitac766f4f6ab9db683e29b093bbc48cfe3b27b2b7 (patch)
treee104bcc4a2fb2fa419a61d11685b13de9cf9e29e /factors/table_test.go
parent29472fc13c4c151fbd432a5a271ff7d0b0af971f (diff)
Show regular complexity of prime factors
This metric shows how many combinations you'll need to memorize prime powers, and how big the numbers are in complementary multiplication. The YouTube video "the best way to count" inspired me to think I need a metric to handle both size and factors, but the specific metric is entirely original (or at least independently discovered).
Diffstat (limited to 'factors/table_test.go')
-rw-r--r--factors/table_test.go45
1 files changed, 45 insertions, 0 deletions
diff --git a/factors/table_test.go b/factors/table_test.go
index c7eeb24..1ff795c 100644
--- a/factors/table_test.go
+++ b/factors/table_test.go
@@ -18,6 +18,7 @@ package factors
import (
"fmt"
+ "math"
"testing"
)
@@ -402,6 +403,30 @@ func TestSplit(t *testing.T) {
tableTest(t, splitTest, splitCases, stdEquals[uintPair], "Split")
}
+var primeRegularComplexityCases = map[uint]map[uint]float64{
+ 2: {2: 1},
+ 3: {3: 1},
+ 4: {2: 1},
+ 6: {2: 3, 3: 2},
+ 10: {2: 5, 5: 2},
+ 12: {2: math.Sqrt(3), 3: 4},
+ 20: {2: math.Sqrt(5), 5: 4},
+ 24: {2: math.Cbrt(3), 3: 8},
+ 36: {2: 3, 3: 2},
+ 40: {2: math.Cbrt(5), 5: 8},
+ 60: {2: math.Sqrt(15), 3: 20, 5: 12},
+ 120: {2: math.Cbrt(15), 3: 40, 5: 24},
+ 360: {2: math.Cbrt(45), 3: math.Sqrt(40), 5: 72},
+}
+
+func TestPrimeRegularComplexity(t *testing.T) {
+ // Use approxEquals instead of == due to differences between
+ // math.Sqrt/math.Cbrt and math.Pow.
+ // The different digits are never shown to the user, so no big deal.
+ tableTest(t, PrimeRegularComplexities, primeRegularComplexityCases,
+ mapApproxEquals[uint], "PrimeRegularComplexities")
+}
+
// to be used as the equal paramater for tableTest
func stdEquals[T comparable](a, b T) bool { return a == b }
@@ -421,6 +446,26 @@ func mapEquals[K, V comparable](a, b map[K]V) bool {
return true
}
+func approxEquals(a, b, epsilon float64) bool {
+ return math.Abs(a-b) <= epsilon*math.Max(math.Abs(a), math.Abs(b))
+}
+
+func mapApproxEquals[K comparable](a, b map[K]float64) bool {
+ for k, av := range a {
+ bv, ok := b[k]
+ if !ok || !approxEquals(av, bv, 1e-15) {
+ return false
+ }
+ }
+ for k, bv := range b {
+ av, ok := a[k]
+ if !ok || !approxEquals(av, bv, 1e-15) {
+ return false
+ }
+ }
+ return true
+}
+
func setEquals[E comparable](a, b []E) bool {
// use maps to simulate sets
// aSet[a] == true means set contains a, false means not