diff options
Diffstat (limited to 'factors/type.go')
| -rw-r--r-- | factors/type.go | 11 |
1 files changed, 4 insertions, 7 deletions
diff --git a/factors/type.go b/factors/type.go index 919baef..3e116af 100644 --- a/factors/type.go +++ b/factors/type.go @@ -1,7 +1,5 @@ package factors -import "slices" - // The set of all colossaly abundant numbers that are small enough // to be stored in a uint64. // The first 15 are also the first 15 superior highly composites. @@ -69,9 +67,9 @@ const ( // Type determines the [CompositenessType] of a number. func Type(n uint) CompositenessType { - if slices.Contains(colossallyAbundantNums[:], uint64(n)) { + if contains(colossallyAbundantNums[:], uint64(n)) { return ColossallyAbundant - } else if slices.Contains(superabundantNums[:], uint64(n)) { + } else if contains(superabundantNums[:], uint64(n)) { return Superabundant } else if exponentsOrdered(n) { return OrderedExponent @@ -99,7 +97,7 @@ func exponentsOrdered(n uint) bool { } pf := PrimeFactorize(n) - maxPrime := slices.Max(pf.Primes()) + maxPrime := maxUints(pf.Primes()) for prime, prevPrime := uint(3), uint(2); prime <= maxPrime; { if pf.Exponent(prime) > pf.Exponent(prevPrime) { @@ -122,8 +120,7 @@ func practical(n uint) bool { } pf := PrimeFactorize(uint(n)) - primes := pf.Primes() - slices.Sort(primes) + primes := sortUints(pf.Primes()) // algorithm from Wikipedia for i := 0; i < pf.Size()-1; i++ { |
