1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
package factors
import (
"fmt"
"math"
"testing"
)
var primeFactorCases = map[uint]PrimeFactorization{
0: PrimeFactorization{map[uint]uint{0: 1}},
1: PrimeFactorization{map[uint]uint{}},
2: PrimeFactorization{map[uint]uint{2: 1}},
3: PrimeFactorization{map[uint]uint{3: 1}},
4: PrimeFactorization{map[uint]uint{2: 2}},
6: PrimeFactorization{map[uint]uint{2: 1, 3: 1}},
10: PrimeFactorization{map[uint]uint{2: 1, 5: 1}},
12: PrimeFactorization{map[uint]uint{2: 2, 3: 1}},
33: PrimeFactorization{map[uint]uint{3: 1, 11: 1}},
60: PrimeFactorization{map[uint]uint{2: 2, 3: 1, 5: 1}},
86400: PrimeFactorization{map[uint]uint{2: 7, 3: 3, 5: 2}},
}
func TestPrimeFactorize(t *testing.T) {
for i, expected := range primeFactorCases {
testname := fmt.Sprintf("%d", i)
t.Run(testname, func(t *testing.T) {
actual := PrimeFactorize(i)
if !mapEquals(expected.exponents, actual.exponents) {
t.Errorf("PrimeFactorize(%d) = %s, want %s", i, actual, expected)
}
})
}
}
var factorCases = map[uint][]uint{
1: []uint{1},
2: []uint{1, 2},
4: []uint{1, 2, 4},
6: []uint{1, 2, 3, 6},
10: []uint{1, 2, 5, 10},
12: []uint{1, 2, 3, 4, 6, 12},
13: []uint{1, 13},
15: []uint{1, 3, 5, 15},
18: []uint{1, 2, 3, 6, 9, 18},
60: []uint{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60},
}
func TestFactors(t *testing.T) {
for i, expected := range factorCases {
testname := fmt.Sprintf("%d", i)
t.Run(testname, func(t *testing.T) {
actual := Factors(i)
if !setEquals(expected, actual) {
t.Errorf("Factors(%d) = %v, want %v", i, actual, expected)
}
})
}
}
var totativeRatioCases = map[uint]float64{
1: 1.0,
2: 0.5,
3: 2.0 / 3.0,
4: 0.5,
6: 1.0 / 3.0,
8: 0.5,
12: 1.0 / 3.0,
}
func TestTotativeRatio(t *testing.T) {
for i, expected := range totativeRatioCases {
testname := fmt.Sprintf("%d", i)
t.Run(testname, func(t *testing.T) {
actual := TotativeRatio(i)
if !floatEquals(expected, actual, 1e-15) {
t.Errorf("TotativeRatio(%d) = %v, want %v", i, actual, expected)
}
})
}
}
var factorScoreCases = map[uint]float64{
1: 1.0,
2: 1.5,
3: 4.0 / 3.0,
4: 1.75,
6: 2.0,
8: 1.875,
10: 1.8,
12: 7.0 / 3.0,
120: 3.0,
}
func TestFactorScore(t *testing.T) {
for i, expected := range factorScoreCases {
testname := fmt.Sprintf("%d", i)
t.Run(testname, func(t *testing.T) {
actual := Score(i)
// factors.Score is accurate enough that we can test
// for exact float values!
if expected != actual {
t.Errorf("Score(%d) = %v, want %v", i, actual, expected)
}
})
}
}
var basicRankCases = map[uint]string{
2: "D-", 3: "E-", 4: "C~", 5: "F+", 6: "B~",
7: "F-", 8: "C-", 9: "E~", 10: "D+", 11: "F~", 12: "A-",
14: "D~", 15: "E+", 18: "B-", 20: "C+", 24: "A~", 30: "B+", 60: "A+",
}
func TestBasicRank (t *testing.T) {
for i, expected := range basicRankCases {
t.Run(fmt.Sprintf("%d", i), func(t *testing.T) {
actual := BasicRank(i)
if expected != actual {
t.Errorf("BasicRank(%d) = %s, want %s", i, actual, expected)
}
})
}
}
func mapEquals[K comparable, V comparable](a, b map[K]V) bool {
for k := range a {
if a[k] != b[k] {
return false
}
}
for k := range b {
if a[k] != b[k] {
return false
}
}
return true
}
func setEquals(a, b []uint) bool {
// use maps to simulate sets
// aSet[a] == true means set contains a, false means not
aSet := make(map[uint]bool)
bSet := make(map[uint]bool)
for _, i := range a {
aSet[i] = true
}
for _, j := range b {
bSet[j] = true
}
return mapEquals(aSet, bSet)
}
func floatEquals(a, b, maxDelta float64) bool {
return math.Abs(a-b) <= maxDelta*math.Max(math.Abs(a), math.Abs(b))
}
|