summaryrefslogtreecommitdiff
path: root/print_digit_map.go
blob: 1bbfa8b86c9afade7ce0bf6da45c0375c6dd368d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/* This script is part of radix_info.
   Copyright (C) 2023  Adrien Hopkins

   This program is free software: you can redistribute it and/or modify
   it under the terms of version 3 of the GNU General Public License
   as published by the Free Software Foundation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

package main

import (
	"aphopkins/radix_info/factors"
	"fmt"
	"io"
	"strconv"
	"strings"
)

// The maximum radix that is supported by writeDigitMapSmall
const maxSmallRadix = 36

func writeDigitMap(w io.Writer, digitMap []factors.DigitType) {
	if len(digitMap) <= 36 {
		writeDigitMapSmall(w, digitMap)
	}
}

// Prints a digit map suitable for small bases (≤36).
func writeDigitMapSmall(w io.Writer, digitMap []factors.DigitType) {
	radix := uint(len(digitMap))
	digitsString := strings.Builder{}
	digitsString.Grow(int(3*radix + 6))
	digitsString.WriteString("Digit:")
	typesString := strings.Builder{}
	typesString.WriteString("Class:")
	for digit, digitType := range digitMap {
		digitString := fmt.Sprintf("%2s", strings.ToUpper(
			strconv.FormatUint(uint64(digit), int(radix))))
		typeString := digitType.String()
		fmt.Fprintf(&digitsString, " %s", colourString(digitString, digitType))
		fmt.Fprintf(&typesString, " %s", colourString(typeString, digitType))
	}

	fmt.Fprintln(w, digitsString.String())
	fmt.Fprintln(w, typesString.String())
}

// Prints a compactified digit map, used in the compact display.
func writeDigitMapCompact(w io.Writer, digitMap []factors.DigitType) {
	radix := uint(len(digitMap))
	if radix <= maxSmallRadix {
		fmt.Fprint(w, "Digits: ")
		for digit, digitType := range digitMap {
			fmt.Fprint(w, colourString(strings.ToUpper(
				strconv.FormatUint(uint64(digit), int(radix))), digitType))
		}
		fmt.Fprintln(w)
	}
}

func colourString(s string, digitType factors.DigitType) string {
	var colourBegin string
	switch digitType.TotativeType() {
	case factors.Regular:
		switch digitType.Regularity() {
		case 0:
			colourBegin = "\x1B[48;5;5m" // special cases (1)
		case 1:
			colourBegin = "\x1B[48;5;4m" // factors
		case 2:
			colourBegin = "\x1B[48;5;6m" // 2-regulars
		default:
			colourBegin = "\x1B[48;5;2m" // other regulars
		}
	case factors.Omega, factors.Alpha, factors.Pseudoneighbour:
		if digitType.Regularity() == 0 {
			colourBegin = "\x1B[48;5;198m" // neighbourly totatives
		} else {
			colourBegin = "\x1B[48;5;136m" // neighbourly semitotatives
		}
	case factors.Opaque:
		if digitType.Regularity() == 0 {
			colourBegin = "\x1B[48;5;1m" // opaque totatives
		} else {
			colourBegin = "\x1B[48;5;130m" // opaque semitotatives
		}
	default:
		colourBegin = "\x1B[48;5;5m" // special cases (0)
	}

	return colourBegin + "\x1B[38;5;15m" + s + "\x1B[0m"
}