1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/* This script is part of radix_info.
Copyright (C) 2023 Adrien Hopkins
This program is free software: you can redistribute it and/or modify
it under the terms of version 3 of the GNU General Public License
as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
package main
import (
"aphopkins/radix_info/factors"
"fmt"
"io"
"strconv"
"strings"
)
// The maximum radix that is supported by writeDigitMapSmall
const maxSmallRadix = 36
func writeDigitMap(w io.Writer, digitMap []factors.DigitType) {
if len(digitMap) <= 36 {
writeDigitMapSmall(w, digitMap)
}
}
// Prints a digit map suitable for small bases (≤36).
func writeDigitMapSmall(w io.Writer, digitMap []factors.DigitType) {
radix := uint(len(digitMap))
digitsString := strings.Builder{}
digitsString.Grow(int(3*radix + 6))
digitsString.WriteString("Digit:")
typesString := strings.Builder{}
typesString.WriteString("Class:")
for digit, digitType := range digitMap {
digitString := fmt.Sprintf("%2s", strings.ToUpper(
strconv.FormatUint(uint64(digit), int(radix))))
typeString := digitType.String()
fmt.Fprintf(&digitsString, " %s", colourString(digitString, digitType))
fmt.Fprintf(&typesString, " %s", colourString(typeString, digitType))
}
fmt.Fprintln(w, digitsString.String())
fmt.Fprintln(w, typesString.String())
}
// Prints a compactified digit map, used in the compact display.
func writeDigitMapCompact(w io.Writer, digitMap []factors.DigitType) {
radix := uint(len(digitMap))
if radix <= maxSmallRadix {
fmt.Fprint(w, "Digits: ")
for digit, digitType := range digitMap {
fmt.Fprint(w, colourString(strings.ToUpper(
strconv.FormatUint(uint64(digit), int(radix))), digitType))
}
fmt.Fprintln(w)
}
}
func colourString(s string, digitType factors.DigitType) string {
var colourBegin string
switch digitType.TotativeType() {
case factors.Regular:
switch digitType.Regularity() {
case 0:
colourBegin = "\x1B[48;5;5m" // special cases (1)
case 1:
colourBegin = "\x1B[48;5;4m" // factors
case 2:
colourBegin = "\x1B[48;5;6m" // 2-regulars
default:
colourBegin = "\x1B[48;5;2m" // other regulars
}
case factors.Omega, factors.Alpha, factors.Pseudoneighbour:
if digitType.Regularity() == 0 {
colourBegin = "\x1B[48;5;198m" // neighbourly totatives
} else {
colourBegin = "\x1B[48;5;136m" // neighbourly semitotatives
}
case factors.Opaque:
if digitType.Regularity() == 0 {
colourBegin = "\x1B[48;5;1m" // opaque totatives
} else {
colourBegin = "\x1B[48;5;130m" // opaque semitotatives
}
default:
colourBegin = "\x1B[48;5;5m" // special cases (0)
}
return colourBegin + "\x1B[38;5;15m" + s + "\x1B[0m"
}
|